Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Front Pharmacol ; 15: 1360691, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572432

RESUMO

Background: Recent advancements in China's perinatal and neonatal intensive care have significantly reduced neonatal mortality, yet preterm births before 32 weeks remain the primary cause of neonatal fatalities and contribute to long-term disabilities. The prognosis of very preterm infants (VPIs) is significantly affected by factors including the intrauterine environment, delivery method and neonatal intensive care. Cesarean section which often used for preterm births has implications that are not fully understood, particularly concerning the type of anesthesia used. This study examines the impact of general anesthesia (GA) during cesarean delivery on VPI outcomes, aiming to identify strategies for mitigating GA-associated risks. Methods: This cohort study analyzed 1,029 VPIs born via cesarean section under 32 weeks' gestation at our single-center from 1 January 2018, to 31 December 2022. Detailed medical records, encompassing perioperative information, maternal data and neonatal outcomes were meticulously examined. The primary aim of this investigation was to compare maternal characteristics and neonatal outcomes between VPIs delivered under GA and neuraxial anesthesia (NA). A significance level of p < 0.05 was established. Results: Of the 1,029 VPIs analyzed, 87.95% (n = 905) were delivered via NA and 12.05% (n = 124) via GA. Mothers with hypertensive pregnancy diseases and emergency operations were more inclined to choose GA. VPIs delivered under GA showed a lower Apgar score at one and 5 minutes (p < 0.01), increased need for tracheal intubation resuscitation (32.2% vs. 12.2%, p < 0.01) and a greater incidence of severe neurological injury (SNI) (14.5% vs. 5%, p < 0.01). Multivariable analysis revealed GA was significantly associated with lower Apgar scores at one (OR 6.321, 95% CI 3.729-10.714; p < 0.01) and 5 minutes (OR 4.535, 95% CI 2.975-6.913; p < 0.01), higher risk of tracheal intubation resuscitation (OR = 3.133, 95% CI = 1.939-5.061; p < 0.01) and SNI (OR = 3.019, 95% CI = 1.615-5.643; p < 0.01). Furthermore, for VPIs delivered under GA, a prolonged interval from skin incision to fetus delivery was associated with a lower 5-min Apgar score (p < 0.01). Conclusion: This study revealed the significant impact of GA on adverse outcomes among VPIs. In cases when GA is required, proactive measures should be instituted for the care of VPIs such as expediting the interval from skin incision to fetal delivery.

2.
J Public Health Manag Pract ; 30(3): 394-402, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38603745

RESUMO

OBJECTIVES: This study aimed to explore the latent profiles of coronavirus-related health literacy among Chinese residents and investigate whether some predictive factors are linked with different latent subgroups of coronavirus-related health literacy. DESIGN/SETTING: This study was a cross-sectional survey conducted among Chinese residents beginning in April 2020. PARTICIPANTS: A total of 1610 Chinese residents aged 15 to 69 years were involved and were asked to complete the questionnaire about coronavirus-related health literacy, demographic information, and COVID-19 pandemic-related information. MAIN OUTCOME MEASURE: Examined the latent profiles of coronavirus-related health literacy and explored the influencing factors of different profiles of coronavirus-related health literacy. RESULTS: The results showed that there were 3 latent subgroups, namely, high coronavirus-related health literacy (45.53%), medium coronavirus-related health literacy (47.76%), and low coronavirus-related health literacy (6.71%). Logistic regression analysis showed that gender, education, and the frequency of exposure to news about the pandemic could predict group membership. CONCLUSIONS: Most Chinese residents have medium coronavirus-related health literacy. Education is an important factor that has a long-term stable influence on coronavirus-related health literacy, and the frequency of exposure to news about the pandemic is a factor that can improve coronavirus-related health literacy in a short time.


Assuntos
COVID-19 , Letramento em Saúde , Humanos , Estudos Transversais , Pandemias , COVID-19/epidemiologia , Inquéritos e Questionários , China/epidemiologia
3.
J Neurosci ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38527807

RESUMO

Adaptive behavior relies both on specific rules that vary across situations and stable long-term knowledge gained from experience. The frontoparietal control network (FPCN) is implicated in the brain's ability to balance these different influences on action. Here, we investigate how the topographical organization of the cortex supports behavioral flexibility within the FPCN. Functional properties of this network might reflect its juxtaposition between the dorsal attention network (DAN) and the default mode network (DMN), two large-scale systems implicated in top-down attention and memory-guided cognition, respectively. Our study tests whether subnetworks of FPCN are topographically proximal to the DAN and the DMN, respectively, and how these topographical differences relate to functional differences: the proximity of each subnetwork is anticipated to play a pivotal role in generating distinct cognitive modes relevant to working memory and long-term memory. We show that FPCN subsystems share multiple anatomical and functional similarities with their neighboring systems (DAN and DMN) and that this topographic architecture supports distinct interaction patterns that give rise to different patterns of functional behavior. The FPCN acts as a unified system when long-term knowledge supports behavior but becomes segregated into discrete subsystems with different patterns of interaction when long term memory is less relevant. In this way, our study suggests that the topographic organization of the FPCN, as well as the connections it forms with distant regions of cortex, are important influences on how this system supports flexible behavior.Significance Statement Adaptive behavior depends on adjudicating between specific rules that vary across situations. The frontoparietal control network (FPCN) helps guide this process through its interactions with other brain regions. We examined how local topographical features support this function of the FPCN. Subnetworks within the FPCN share key anatomical and functional features with adjacent systems linked to external attention and long-term knowledge. This topographic architecture supports the emergence of distinct interaction patterns: FPCN subnetworks act cohesively when long-term memory can support behavior, but segregate when long-term memory is not aligned with current goals. Our study shows that, in addition to dynamic interaction with spatially distant cortical regions, local topographical features of the FPCN play a significant role in flexible behavior.

4.
Syst Appl Microbiol ; 47(2-3): 126503, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38490089

RESUMO

A taxonomic investigation was conducted on four bacterial strains isolated from soil contaminated with polycyclic aromatic hydrocarbons and heavy metals. Phylogenetic analysis revealed that these strains belonged to the family Chitinophagaceae. Examination of the 16S rRNA genes indicated that their sequence identities were below 97.6 % compared to any known and validly nominated bacterial species. The genomes of the four strains ranged from 4.12 to 8.76 Mb, with overall G + C molar contents varying from 41.28 % to 50.39 %. Predominant cellular fatty acids included iso-C15:0, iso-C15:1 G, and iso-C17:0 3-OH. The average nucleotide identity ranged from 66.90 % to 74.63 %, and digital DNA-DNA hybridization was 12.5-12.8 %. Based on the genomic and phenotypic features of the new strains, four novel species and two new genera were proposed within the family Chitinophagaceae. The ecological distributions were investigated by data-mining of NCBI databases, and results showed that additional strains or species of the newly proposed taxa were widely distributed in various environments, including polluted soil and waters. Functional analysis demonstrated that strains H1-2-19XT, JS81T, and JY13-12T exhibited resistance to arsenite (III) and chromate (VI). The proposed names for the four novel species are Paraflavitalea pollutisoli (type strain H1-2-19XT = JCM 36460T = CGMCC 1.61321T), Terrimonas pollutisoli (type strain H1YJ31T = JCM 36215T = CGMCC 1.61343T), Pollutibacter soli (type strain JS81T = JCM 36462T = CGMCC 1.61338T), and Polluticoccus soli (type strain JY13-12T = JCM 36463T = CGMCC 1.61341T).

5.
IEEE Trans Cybern ; 54(5): 2683-2695, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38512748

RESUMO

Smart manufacturing has been transforming toward industrial digitalization integrated with various advanced technologies. Metaverse has been evolving as a next-generation paradigm of a digital space extended and augmented by reality. In the metaverse, users are interconnected for various virtual activities. In consideration of advanced possibilities that may be brought by the metaverse, it is envisioned that industrial metaverse should be integrated into smart manufacturing to upgrade industry for more visible, intelligent and efficient production in the future. Therefore, a conceptual model, named IMverse Model, and novel characteristics of the industrial metaverse for smart manufacturing are proposed in this article. Besides, an industrial metaverse architecture, named IMverse Architecture, is proposed involving several key enabling technologies. Typical innovative applications of the industrial metaverse throughout the whole product life cycle for smart manufacturing are presented with insights. Nonetheless, in prospect of future, the industrial metaverse still faces limitations and is far from implementation. Thus, challenges and open issues of the industrial metaverse for smart manufacturing are discussed, then outlook is provided for further research and application.

6.
MedComm (2020) ; 5(3): e504, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38469551

RESUMO

The circadian clock system orchestrates daily behavioral and physiological rhythms, facilitating adaptation to environmental and internal oscillations. Disruptions in circadian rhythms have been linked to increased susceptibility to various diseases and can exacerbate existing conditions. This review delves into the intricate regulation of diurnal gene expression and cell function by circadian clocks across diverse tissues. . Specifically, we explore the rhythmicity of gene expressions, behaviors, and functions in both immune and non-immune cells, elucidating the regulatory effects and mechanisms imposed by circadian clocks. A detailed discussion is centered on elucidating the complex functions of circadian clocks in regulating key cellular signaling pathways. We further review the circadian regulation in diverse diseases, with a focus on inflammatory diseases, cancers, and systemic diseases. By highlighting the intimate interplay between circadian clocks and diseases, especially through clock-controlled cell function, this review contributes to the development of novel disease intervention strategies. This enhanced understanding holds significant promise for the design of targeted therapies that can exploit the circadian regulation mechanisms for improved treatment efficacy.

7.
ACS Appl Mater Interfaces ; 16(6): 7819-7825, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38300743

RESUMO

Adsorptive separation technology provides an effective approach for separating gases with similar physicochemical properties, such as the purification of acetylene (C2H2) from carbon dioxide (CO2). The high designability and tunability of metal-organic framework (MOF) adsorbents make them ideal design platforms for this challenging separation. Herein, we employ an isoreticular functionalization strategy to fine-tune the pore environment of Zr- and Th-based UiO-66 by the immobilization of the benzothiadiazole group via bottom-up synthesis. The functionalized UPC-120 exhibits an enhanced C2H2/CO2 separation performance, which is confirmed by adsorption isotherms, dynamic breakthrough curves, and theoretical simulations. The synergy of ligand functionalization and metal ion fine-tuning guided by isoreticular chemistry provides a new perspective for the design and development of adsorbents for challenging gas separation processes.

8.
Cardiovasc Diabetol ; 23(1): 58, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336692

RESUMO

AIM: Patients with diabetes mellitus have poor prognosis after myocardial ischemic injury. However, the mechanism is unclear and there are no related therapies. We aimed to identify regulators of diabetic myocardial ischemic injury. METHODS AND RESULTS: Mass spectrometry-based, non-targeted metabolomic approach was used to profile coronary sinus blood from diabetic and non-diabetic Bama-mini pigs at 0.5-h post coronary artery ligation. Six metabolites had a |log2 (Fold Change)|> 1.3. Among them, the most changed is arachidonic acid (AA), levels of which were 32 times lower in diabetic pigs than in non-diabetic pigs. The AA-derived products, PGI2 and 6-keto-PGF1α, were also significantly reduced. AA treatment of cultured cardiomyocytes protected against cell death by 30% at 48 h of high glucose and oxygen deprivation, which coincided with increased mitophagic activity (as indicated by increased LC3II/LC3I, decreased p62 and increased parkin & PINK1), improved mitochondrial renewal (upregulation of Drp1 and FIS1), reduced ROS generation and increased ATP production. These cardioprotective effects were abolished by PINK1(a crucial mitophagy protein) knockdown or the autophagy inhibitor 3-Methyladenine. The protective effect of AA was also inhibited by indomethacin and Cay10441, a prostacyclin receptor antagonist. Furthermore, diabetic Sprague Dawley rats were subjected to coronary ligation for 40 min and AA treatment (10 mg/day per animal gavaged) decreased myocardial infarct size, cell apoptosis index, inflammatory cytokines and improved heart function. Scanning electron microscopy showed more intact mitochondria in the border zone of infarcted myocardium in AA treated rats. Lastly, diabetic patients after myocardial infarction had lower plasma levels of AA and 6-keto-PGF1α and reduced cardiac ejection fraction, compared with non-diabetic patients after myocardial infarction. Plasma AA level was inversely correlated with fasting blood glucose. CONCLUSIONS: AA protects against diabetic ischemic myocardial damage by promoting mitochondrial autophagy and renewal, which is related to AA derived PGI2 signaling. AA may represent a new strategy to treat diabetic myocardial ischemic injury.


Assuntos
Diabetes Mellitus , Infarto do Miocárdio , Humanos , Ratos , Animais , Suínos , Ratos Sprague-Dawley , Ácido Araquidônico/farmacologia , Porco Miniatura/metabolismo , Infarto do Miocárdio/metabolismo , Proteínas Quinases/metabolismo , Apoptose
9.
Sci Rep ; 14(1): 3036, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321043

RESUMO

Drawing upon self-determination theory, this study explores how listening music willingness (LMW) and music engagement (ME) impact musical development and achievement (MDA) via the mediating role of music aesthetic experience (MAE) and music listening behavior (MLB) among 299 university music students in Chinese higher educational institutions (HEIs). Employing structural equation modeling (SEM), the results reveal that LMW significantly influences MLB but not musical development and achievement. ME significantly affects both music aesthetic experience and MDA, with a significant correlation between MLB and MDA. Besides, the relationship between MAE and MDA is positively significant. Mediation analysis reveals that music listening behavior fully mediates the LMW-MDA relationship, while the relationship between ME and MDA is partially mediated by musical aesthetic experience. These findings offer insights for crafting music educational strategies emphasizing positive listening behavior, active engagement, and enriched aesthetic experiences to enhance effectiveness in HEIs. For policymakers particularly in China, understanding the pivotal role of MLB as a mediator between willingness and achievement suggests interventions targeting listening habits can positively influence overall MDA. Furthermore, recognizing the partial mediation by aesthetic experience in the relationship between engagement and MDA suggests programs enhancing musical aesthetic experiences could amplify the impact of music education initiatives.


Assuntos
Música , Humanos , Universidades , Instituições Acadêmicas , Estudantes , China
10.
Drug Des Devel Ther ; 18: 13-28, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38205394

RESUMO

Purpose: This study aims to investigate the effects of Huang Gan formula (HGF), a Chinese herbal prescription used for chronic kidney disease (CKD), on the regulation of the gut microbiota and colonic microenvironment of CKD. Methods: CKD rats were induced by 150 mg/kg adenine gavage for 4 weeks, then orally treated with or without 3.6 g/kg or 7.2 g/kg of HGF for 8 weeks. The renal function and structure were analyzed by biochemical detection, hematoxylin and eosin, Masson's trichrome, Sirius red and immunochemical staining. Average fecal weight and number in the colon were recorded to assess colonic motility. Further, the changes in the gut microbiota and colonic microenvironment were evaluated by 16S rRNA sequencing, RT-PCR or immunofluorescence. The levels of inflammatory cytokines, uremic toxins, and NF-κB signaling pathway were detected by RT-PCR, ELISA, chloramine-T method or Western blotting. Redundancy analysis biplot and Spearman's rank correlation coefficient were used for correlation analysis. Results: HGF significantly improved renal function and pathological injuries of CKD. HGF could improve gut microbial dysbiosis, protect colonic barrier and promote motility of colonic lumens. Further, HGF inhibited systemic inflammation through a reduction of TNF-α, IL-6, IL-1ß, TGF-ß1, and a suppression of NF-κB signaling pathway. The serum levels of the selected uremic toxins were also reduced by HGF treatment. Spearman correlation analysis suggested that high-dose HGF inhibited the overgrowth of bacteria that were positively correlated with inflammatory factors (eg, TNF-α) and uremic toxins (eg, indoxyl sulfate), whereas it promoted the proliferation of bacteria belonging to beneficial microbial groups and was positively correlated with the level of IL-10. Conclusion: Our results suggest that HGF can improve adenine-induced CKD via suppressing systemic inflammation and uremia, which may associate with the regulations of the gut microbiota and colonic microenvironment.


Assuntos
Microbioma Gastrointestinal , Insuficiência Renal Crônica , Uremia , Animais , Ratos , NF-kappa B , RNA Ribossômico 16S , Fator de Necrose Tumoral alfa , Toxinas Urêmicas , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/tratamento farmacológico , Adenina/farmacologia
11.
Ecotoxicol Environ Saf ; 271: 115909, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199220

RESUMO

OBJECTIVE: The effects of air pollution on metabolism have become a popular research topic, and a large number of studies had confirmed that air pollution exposure could induce insulin resistance (IR) to varying degrees, but the results were inconsistent, especially for the long-term exposures. The aim of the current study was to further investigate the potential effects of air pollution on IR. METHODS: A systematic review and meta-analysis of four electronic databases, including PubMed, Embase, Web of Science and Cochrane were conducted, searching for relevant studies published before June 10, 2023, in order to explore the potential relationships between long-term exposure to air pollution and IR. A total of 10 studies were included for data analysis, including seven cohort studies and three cross-sectional studies. Four major components of air pollution, including PM2.5 (particulate matter with an aerodynamic diameter of 2.5 µm or less), PM10 (particulate matter with an aerodynamic diameter of 10 µm or less), NO2, and SO2 were selected, and each analyzed for the potential impacts on insulin resistance, in the form of adjusted percentage changes in the homeostasis assessment model of insulin resistance (HOMA-IR). RESULTS: This systematic review and meta-analysis showed that for every 1 µg/m³ increase in the concentration of selected air pollutants, PM2.5 induced a 0.40% change in HOMA-IR (95%CI: -0.03, 0.84; I2 =67.4%, p = 0.009), while PM10 induced a 1.61% change (95%CI: 0.243, 2.968; I2 =49.1%, p = 0.001). Meanwhile, the change in HOMA-IR due to increased NO2 or SO2 exposure concentration was only 0.09% (95%CI: -0.01, 0.19; I2 =83.2%, p = 0.002) or 0.01% (95%CI: -0.04, 0.06; I2 =0.0%, p = 0.638), respectively. CONCLUSIONS: Long-term exposures to PM2.5, PM10, NO2 or SO2 are indeed associated with the odds of IR. Among the analyzed pollutants, inhalable particulate matters appear to exert greater impacts on IR.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Resistência à Insulina , Humanos , Dióxido de Nitrogênio/análise , Estudos Transversais , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Material Particulado/toxicidade , Material Particulado/análise
12.
Front Microbiol ; 14: 1289110, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38088973

RESUMO

There are many unidentified microbes in polluted soil needing to be explored and nominated to benefit the study of microbial ecology. In this study, a taxonomic research was carried out on five bacterial strains which were isolated and cultivated from polycyclic aromatic hydrocarbons, and heavy metals polluted soil of an abandoned coking plant. Phylogenetical analysis showed that they belonged to the phyla Proteobacteria and Actinobacteria, and their 16S rRNA gene sequence identities were lower than 98.5% to any known and validly nominated bacterial species, suggesting that they were potentially representing new species. Using polyphasic taxonomic approaches, the five strains were classified as new species of the families Microbacteriaceae and Sphingomonadaceae. Genome sizes of the five strains ranged from 3.07 to 6.60 Mb, with overall DNA G+C contents of 63.57-71.22 mol%. The five strains had average nucleotide identity of 72.38-87.38% and digital DNA-DNA hybridization of 14.0-34.2% comparing with their closely related type strains, which were all below the thresholds for species delineation, supporting these five strains as novel species. Based on the phylogenetic, phylogenomic, and phenotypic characterizations, the five novel species are proposed as Agromyces chromiiresistens (type strain H3Y2-19aT = CGMCC 1.61332T), Salinibacterium metalliresistens (type strain H3M29-4T = CGMCC 1.61335T), Novosphingobium album (type strain H3SJ31-1T = CGMCC 1.61329T), Sphingomonas pollutisoli (type strain H39-1-10T = CGMCC 1.61325T), and Sphingobium arseniciresistens (type strain H39-3-25T = CGMCC 1.61326T). Comparative genome analysis revealed that the species of the family Sphingomonadaceae represented by H39-1-10T, H39-3-25T, and H3SJ31-1T possessed more functional protein-coding genes for the degradation of aromatic pollutants than the species of the family Microbacteriaceae represented by H3Y2-19aT and H3M29-4T. Furthermore, their capacities of resisting heavy metals and metabolizing aromatic compounds were investigated. The results indicated that strains H3Y2-19aT and H39-3-25T were robustly resistant to chromate (VI) and/or arsenite (III). Strains H39-1-10T and H39-3-25T grew on aromatic compounds, including naphthalene, as carbon sources even in the presence of chromate (VI) and arsenite (III). These features reflected their adaptation to the polluted soil environment.

13.
Health Promot Int ; 38(6)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38134417

RESUMO

The outbreak of the Coronavirus disease 2019 (COVID-19) pandemic is an opportunity to improve the health literacy of rural residents. This study aims to explore the levels of health literacy among rural residents during the COVID-19 pandemic and investigate the effects of COVID-19-related variables on the health literacy of rural residents. A total of 882 rural residents aged 15-69 years in Shaanxi province participated in this study and completed the questionnaires about health literacy and COVID-19-related variables. These results showed that although overall health literacy and three aspects of health literacy among rural residents were low and lower than those of Chinese national residents, there was no significant difference in health literacy about safety and emergency between rural residents and Chinese national residents. Additionally, COVID-19-related variables significantly predicted health literacy (i.e. scientific health, safety and emergency and infectious disease prevention). Importantly, unlike other types of health literacy, the effect of a COVID-19-related variable (i.e. the frequency of exposure to news about the COVID-19 pandemic) on infectious disease prevention was only slightly smaller than the effect of high education on infectious disease prevention, and low education was no longer a significant predictor of infectious disease prevention. To conclude, rural residents in Shaanxi province have low health literacy. Education is a major factor affecting the health literacy of rural residents, and the frequency of exposure to news about the pandemic may compensate for the negative impact of low education on health literacy.


Assuntos
COVID-19 , Doenças Transmissíveis , Letramento em Saúde , Humanos , COVID-19/prevenção & controle , COVID-19/epidemiologia , Pandemias/prevenção & controle , Inquéritos e Questionários , China/epidemiologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-37971917

RESUMO

Semisupervised human activity recognition (SemiHAR) has attracted attention in recent years from various domains, such as digital health and ambient intelligence. Currently, it still faces two challenges. For one thing, discriminative features may exist among multiple sequences rather than a single sequence since activities are combinations of motions involving several body parts. For another thing, labeled data and unlabeled data suffer from distribution discrepancies due to the different behavior patterns or biological conditions of users. For that, we propose a novel SemiHAR method based on multitask learning. First, a dimension-based Markov transition field (DMTF) technique is designed to generate 2-D activity data for capturing the interactions among different dimensions. Second, we jointly consider the user recognition (UR) task and the activity recognition (AR) task to reduce the underlying discrepancy. In addition, a task relation learner (TRL) is introduced to dynamically learn task relations, which enables the primary AR task to exploit preferred knowledge from other secondary tasks. We theoretically analyze the proposed SemiHAR and provide a novel generalization result. Extensive experiments conducted on four real-world datasets demonstrate that SemiHAR outperforms other state-of-the-art methods.

15.
Allergy Asthma Clin Immunol ; 19(1): 97, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978564

RESUMO

BACKGROUND: Although numerous studies have suggested a negative correlation between Helicobacter pylori (H. pylori) infection and allergies, there has been limited research on the relationship between H. pylori infections and atopic dermatitis (AD). The present study aimed to investigate the effects of H. pylori infection in an AD mouse model and identify potential mechanisms related to type 2 immunity, skin barrier defects, and pruritus. METHODS: A model of AD-like symptoms was established with 2,4-dinitrochlorobenzene (DNCB) after infection of the gastric cavity with H. pylori. Analysis of the expression of key inflammatory cytokines and serum levels of immunoglobulin E (IgE) was based on enzyme-linked immunosorbent assay (ELISA). The expression of filaggrin (FLG) and loricrin (LOR) were analyzed by immunohistochemistry staining. The evaluation of STAT1, STAT3, phosphorylated STAT1 (phospho-STAT1), and phosphorylated STAT3 (phospho-STAT1) expression levels in skin lesions was performed using western blot. RESULTS: The present study showed that the H. pylori-positive AD group (HP+AD+) exhibited milder skin lesions, including erythema, erosion, swelling, and scaling, than the H. pylori-negative AD group (HP-AD+). Additionally, HP+AD+ displayed lower levels of IgE in serum, and downregulated expression of interleukins 4 and 31 (IL-4 and IL-31) in serum. Furthermore, HP+AD+ demonstrated higher expression of filaggrin and loricrin than HP-AD+. Notably, H. pylori significantly reduced the amount of phosphorylated STAT1 and STAT3. CONCLUSION: Helicobacter pylori infection negatively regulates the inflammatory response by affecting inflammatory factors in the immune response, and repairs the defective epidermal barrier function. In addition, H. pylori infection may reduce IL-31, thereby alleviating pruritus. These effects may be associated with the inhibition of JAK-STAT signaling activation.

16.
Neuromolecular Med ; 25(4): 616-631, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37796401

RESUMO

Anxiety manifestations and cognitive dysfunction are common sequelae in patients with sepsis-associated encephalopathy (SAE). Microglia-mediated inflammatory signaling is involved in anxiety, depression, and cognitive dysfunction during acute infection with bacterial lipopolysaccharide (LPS). However, the molecular mechanisms underlying microglia activation and behavioral and cognitive deficits in sepsis have not been in fully elucidated. Based on previous research, we speculated that the CD137 receptor/ligand system modulates microglia function during sepsis to mediate classical neurological SAE symptoms. A murine model of SAE was established by injecting male C57BL/6 mice with LPS, and cultured mouse BV2 microglia were used for in vitro assays. RT-qPCR, immunofluorescence staining, flow cytometry, and ELISA were used to assess microglial activation and the expression of CD137L and inflammation-related cytokines in the mouse hippocampus and in cultured BV2 cells. In addition, behavioral tests were conducted in assess cognitive performance and behavioral distress. Immunofluorescence and RT-qPCR analyses showed that hippocampal expression of CD137L was upregulated in activated microglia following LPS treatment. Pre-treatment with the CD137L neutralizing antibody TKS-1 significantly reduced CD137L levels, attenuated the expression of M1 polarization markers in microglia, and inhibited the production of TNF-α, IL-1ß, and IL-6 in both LPS-treated mice and BV2 cells. Conversely, stimulation of CD137L signaling by recombinant CD137-Fc fusion protein activated the synthesis and release of pro-inflammatory cytokines in cultures BV2 microglia. Importantly, open field, elevated plus maze, and Y-maze spontaneous alternation test results indicated that TKS-1 administration alleviated anxiety-like behavior and spatial memory decline in mice with LPS-induced SAE. These findings suggest that CD137L upregulation in activated microglia critically contributes to neuroinflammation, anxiety-like behavior, and cognitive dysfunction in the mouse model of LPS-induced sepsis. Therefore, therapeutic modulation of the CD137L/CD137 signaling pathway may represent an effective way to minimize brain damage and prevent cognitive and emotional deficits associated with SAE.


Assuntos
Ligante 4-1BB , Encefalopatia Associada a Sepse , Sepse , Animais , Humanos , Masculino , Camundongos , Citocinas/metabolismo , Modelos Animais de Doenças , Hipocampo , Lipopolissacarídeos/toxicidade , Camundongos Endogâmicos C57BL , Microglia , Doenças Neuroinflamatórias , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Encefalopatia Associada a Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/metabolismo , Ligante 4-1BB/efeitos dos fármacos , Ligante 4-1BB/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico
17.
Animal Model Exp Med ; 6(5): 381-398, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37679891

RESUMO

Patient-derived tumor xenograft (PDX) models, a method involving the surgical extraction of tumor tissues from cancer patients and subsequent transplantation into immunodeficient mice, have emerged as a pivotal approach in translational research, particularly in advancing precision medicine. As the first stage of PDX development, the patient-derived orthotopic xenograft (PDOX) models implant tumor tissue in mice in the corresponding anatomical locations of the patient. The PDOX models have several advantages, including high fidelity to the original tumor, heightened drug sensitivity, and an elevated rate of successful transplantation. However, the PDOX models present significant challenges, requiring advanced surgical techniques and resource-intensive imaging technologies, which limit its application. And then, the humanized mouse models, as well as the zebrafish models, were developed. Humanized mouse models contain a human immune environment resembling the tumor and immune system interplay. The humanized mouse models are a hot topic in PDX model research. Regarding zebrafish patient-derived tumor xenografts (zPDX) and patient-derived organoids (PDO) as promising models for studying cancer and drug discovery, zPDX models are used to transplant tumors into zebrafish as novel personalized medical animal models with the advantage of reducing patient waiting time. PDO models provide a cost-effective approach for drug testing that replicates the in vivo environment and preserves important tumor-related information for patients. The present review highlights the functional characteristics of each new phase of PDX and provides insights into the challenges and prospective developments in this rapidly evolving field.


Assuntos
Neoplasias , Peixe-Zebra , Humanos , Animais , Camundongos , Xenoenxertos , Ensaios Antitumorais Modelo de Xenoenxerto , Estudos Prospectivos , Modelos Animais de Doenças
18.
Redox Biol ; 67: 102871, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37699320

RESUMO

Ferroptosis is a newly discovered form of iron-dependent oxidative cell death and drives the loss of neurons in spinal cord injury (SCI). Mitochondrial damage is a critical contributor to neuronal death, while mitochondrial quality control (MQC) is an essential process for maintaining mitochondrial homeostasis to promote neuronal survival. However, the role of MQC in neuronal ferroptosis has not been clearly elucidated. Here, we further demonstrate that neurons primarily suffer from ferroptosis in SCI at the single-cell RNA sequencing level. Mechanistically, disordered MQC aggravates ferroptosis through excessive mitochondrial fission and mitophagy. Furthermore, mesenchymal stem cells (MSCs)-mediated mitochondrial transfer restores neuronal mitochondria pool and inhibits ferroptosis through mitochondrial fusion by intercellular tunneling nanotubes. Collectively, these results not only suggest that neuronal ferroptosis is regulated in an MQC-dependent manner, but also fulfill the molecular mechanism by which MSCs attenuate neuronal ferroptosis at the subcellular organelle level. More importantly, it provides a promising clinical translation strategy based on stem cell-mediated mitochondrial therapy for mitochondria-related central nervous system disorders.


Assuntos
Ferroptose , Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/metabolismo , Neurônios/metabolismo , Mitocôndrias/metabolismo , Células-Tronco Mesenquimais/metabolismo
19.
Front Psychol ; 14: 1121180, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37519375

RESUMO

Based on social cognitive theory (SCT), the purpose of this study is to examine the role of music attitude and its essential precursors in stimulating the psychological wellbeing of immigrants in isolation (quarantine) during the COVID pandemic. This study employed quantitative methodology; an online survey was administered to collect sufficient data from 300 immigrants who traveled to China during the pandemic. Data were collected from five centralized quarantine centers situated in different cities in China. Additionally, the valid data set was analyzed using structural equation modeling (SEM) via AMOS 24 and SPSS 24. The results indicate that potential predictors such as cognitive - music experience (MEX), environmental - social media peer influence (SPI), and cultural factors such as native music (NM) have a direct, significant, and positive effect on music attitude (MA), which further influences immigrants' psychological wellbeing (PW) during their quarantine period. Moreover, in the presence of the mediator (MA), the mediating relationships between MEX and PW, and NM and PW, are positive, significant, and regarded as partial mediation. However, the moderated mediation effects of music type (MT) on MEX-MA-PW and NM-MA-PW were found to be statistically not significant and unsupported. This study contributes to the literature on the effectiveness of individuals' music attitude and its associated outcomes, focusing on mental health care in lonely situations such as quarantine during the COVID pandemic. More importantly, this study has raised awareness about music, music attitude, and their beneficial outcomes, such as mental calmness and peacefulness for the general public, particularly during social distancing, isolation, and quarantine in the COVID pandemic situation.

20.
Biomark Res ; 11(1): 70, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468977

RESUMO

Biomarkers are detectable molecules that can reflect specific physiological states of cells, organs, and organisms and therefore be regarded as indicators for specific diseases. And the discovery of biomarkers plays an essential role in cancer management from the initial diagnosis to the final treatment regime. Practically, reliable clinical biomarkers are still limited, restricted by the suboptimal methods in biomarker discovery. Nucleic acid aptamers nowadays could be used as a powerful tool in the discovery of protein biomarkers. Nucleic acid aptamers are single-strand oligonucleotides that can specifically bind to various targets with high affinity. As artificial ssDNA or RNA, aptamers possess unique advantages compared to conventional antibodies. They can be flexible in design, low immunogenicity, relative chemical/thermos stability, as well as modifying convenience. Several SELEX (Systematic Evolution of Ligands by Exponential Enrichment) based methods have been generated recently to construct aptamers for discovering new biomarkers in different cell locations. Secretome SELEX-based aptamers selection can facilitate the identification of secreted protein biomarkers. The aptamers developed by cell-SELEX can be used to unveil those biomarkers presented on the cell surface. The aptamers from tissue-SELEX could target intracellular biomarkers. And as a multiplexed protein biomarker detection technology, aptamer-based SOMAScan can analyze thousands of proteins in a single run. In this review, we will introduce the principle and workflow of variations of SELEX-based methods, including secretome SELEX, ADAPT, Cell-SELEX and tissue SELEX. Another powerful proteome analyzing tool, SOMAScan, will also be covered. In the second half of this review, how these methods accelerate biomarker discovery in various diseases, including cardiovascular diseases, cancer and neurodegenerative diseases, will be discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...